

django-rq-mail

This project is not maintained anymore, it doesn’t support latest changes from rq

django-rq-mail is a simple Python library based on rq [https://github.com/nvie/rq] to store emails sent
by Django [https://www.djangoproject.com/] and process them in the background with workers.

As django-rq-mail is based on rq [https://github.com/nvie/rq], it’s entirely backed by Redis [http://redis.io/].

Architecture

django-rq-mail adds new elements to enjoy Sorted Sets [http://redis.io/commands#sorted_set]
from Redis [http://redis.io/].

For the purpose of django-rq-mail, it implements the concept of WaitingQueue
which delays the processing of a job with a timestamp.

The default behavior of rq [https://github.com/nvie/rq] is to process jobs via BLPOP [http://redis.io/commands/blpop] which
blocks the connection when there are no elements to pop from any of the given queues.
With this behavior there is no way to delays the processing of a job and when it’s failing
rq [https://github.com/nvie/rq] pushs it in a failed queue.
Of course, you can requeue this job later but there is no fallback mechanism.

In django-rq-mail you can define fallback steps (in seconds) to retry a job until
it’s not failing. When a job has been tested on each steps we reintroduce
the default behavior of rq [https://github.com/nvie/rq] on pushing it in the failed queue.

Each steps will create a waiting queue and when a job is failing we take the
current timestamp with the delta to retry it in the future.

[image: http://yuml.me/895ce159]
This mechanism is possible with ZADD [http://redis.io/commands/zadd] which
adds a serialized job in the queue with a score and ZREVRANGEBYSCORE [http://redis.io/commands/zrevrangebyscore]
to return all the elements in the sorted set with a score between max (current timestamp) and min.

As you may understood, we have dropped the default blocking behavior
to replace it by a daemon which is running each seconds.

Installation

	Either check out the package from GitHub [https://github.com/thoas/django-rq-mail] or it pull from a release via PyPI

pip install django-rq-mail

	Add ‘rq_mail’ to your INSTALLED_APPS

INSTALLED_APPS = (
 'rq_mail',
)

to use the rq_mail command (via Django commandline) shipped by django-rq-mail.

This command is a minimal integration of rq [https://github.com/nvie/rq] into Django [https://www.djangoproject.com/] to launch the
Dispatcher.

	Define EMAIL_BACKEND

EMAIL_BACKEND = 'rq_mail.backends.RqBackend'

	Define RQ_MAIL_EMAIL_BACKEND the backend used to send your emails, for example

RQ_MAIL_EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

Logging

RQ 0.3.3 uses standard Python’s logging, this means
you can easily configure rqworker‘s logging mechanism in django’s
settings.py. For example:

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'formatters': {
 'rq_console': {
 'format': '%(asctime)s %(message)s',
 'datefmt': '%H:%M:%S',
 },
 },
 'handlers': {
 'rq_console': {
 'level': 'DEBUG',
 'class': 'rq.utils.ColorizingStreamHandler',
 'formatter': 'rq_console',
 'exclude': ['%(asctime)s'],
 },
 },
 'loggers': {
 'rq.worker': {
 'handlers': ['rq_console'],
 'level': 'DEBUG'
 },
 }
}

Utilisation

Once you have installed it, you can run python manage.py rq_mail from your shell.

Configuration

RQ_MAIL_PREFIX

The prefix used to name all queues created by django-rq-mail.

RQ_MAIL_MAIN_QUEUE

The name of the main queue.

RQ_MAIL_EMAIL_BACKEND

The email backend used to send emails when they are processed in the background.

RQ_MAIL_REDIS_HOST

The Redis host used to connect.

RQ_MAIL_REDIS_PORT

The Redis port used to connect.

RQ_MAIL_REDIS_DB

The Redis database used to connect.

RQ_MAIL_REDIS_PASSWORD

The Redis password used to connect.

RQ_MAIL_REDIS_URL

The Redis url used to connect.

RQ_MAIL_REDIS_SOCKET

The Redis socket used to connect.

RQ_MAIL_FALLBACK_STEPS

A simple list of timing to create waiting queues.

You can define as much steps as you want, each will be transformed to a queue.
So if you define 10 steps, you will allow a message to fail 10 times until it
will go in the failed queue.

Reference

For further details see the reference documentation:

	Index

	Module Index

	Search Page

Issues

For any bug reports and feature requests, please use the
Github issue tracker [https://github.com/thoas/django-rq-mail/issues].

Index

 nav.xhtml

 Table of Contents

 		django-rq-mail

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

